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A note on non-integrable phases and coherent states 
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Abstract. The relationship between non-integrable phases and generalised coherent states 
is discussed. 

1. General formalism 

It has recently become more and more evident that the notion of non-integrable phase 
factor (the Berry phase ( B P )  in the case of adiabatic process (Berry 1984) and the 
Aharonov-Anandan phase (AAP) in the case of general cyclic processes (Aharonov 
and Anandan 1987)) provides a very useful tool in understanding many quantum 
mechanical phenomena. 

In many applications one is often faced with the problem of calculating the BP or 
AAP for the family of Hamiltonians constructed in the following way. The space of 
states carries a unitary representation { U ( g ) l g  E G} of some Lie group G. Given a 
parameter space M, the Hamiltonian H ( 5 )  belongs to the Lie algebra of G for any 
5~ M (the special case of the family of unitary equivalent Hamiltonians, after some 
redefinition of timescale, has been recently considered by Giavarini and Onofri (1989)). 
Suppose we have a path 5 =  ( ( t )  and consider the Schrodinger equation 

$( t = 0) = $bo. 

Now, under the above assumptions, the evolution operator 

belongs to the representation of G.  Let S c G be the subgroup consisting of all elements 
g E G such that 

u ( g ) + o  = ei"'g'+o. (2) 
Let J parametrise the coset space G/S.  Then for any g E G, g = 5. h, 5 E G/S,  h E S .  
Therefore we may write 

+ ( t )  = ~ ( t ) ~ o = e i ~ " ' U ( ~ ( t ) ) ~ o  

A t )  = J ( t ) h ( t ) .  (3) 

4(t) = a ( h ( r ) )  

11 Supported by CPBP 01.03. 
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But $({)= U ( { ) $ o  is nothing but a generalised coherent state (Perelomov 1987, 
Giavarini and Onofri 1989). Consequently the solution to the Schrodinger equation 
(1) is to be looked for in the form 

+( t )  = ei'(')+({( t ) ) .  

H ( 5 )  = a"5) TA + a ' ( 5 )  T, 

(4) 
Let us write 

5 E  M 
where TA and T, are the generators corresponding to S and G/S, respectively. We 
introduce the standard Cartan forms o:(l)  and T:({) by 

Substituting the expression (3) (or (4)) into the Schrodinger equation (1) we obtain 

[-d+Ln(u?(l)~A + ~ f ( ~ ) q ) I + n  
= [D: ({)aA ~ 5 ~ + ~ : ( C ~ ~ ' ~ 5 ~ l ~ A ~ n + ~ ~ ; ~ l ~ ~ A ~ ( 5 ~ + ~ : ~ ~ ~ ~ ' ~ ~ ~ l ~ l + o  ( 5 )  

where D( .  . .) is the adjoint representation of G. Let us note that 

(ii) the vectors +bo, T,$, are linearly independent over (W. 

(i) TA$O = TA$O TA E [w 

These facts follow immediately from the definition of the subgroup S. Using (i) and 
(ii) we obtain from ( 5 )  

i l$ ( l )  = (6)' e:(l)a'(6) (6a)  

d - k l ~ ; \ ( l ) ~ A  = - D :  ({)aA ( ( ) T A  - ~ : ( r ) a ' ( t ) ~ A .  (66) 
These equations replace the Schrodinger one. They may be described as follows: the 
first set, (6a),  describes some dynamics on G/S; we have to find the functions { = { ( t )  
provided the functions 5 = &( t )  are given. After solving them we may calculate the 
phase + ( t )  from (6b). 

If it happens that for some function e =  ( ( t ) ,  O S  t S  T, there exists the solution 
l( t )  such that {(O) = l( T ) ,  then the quantum system under consideration performs the 
cyclic motion in the sense of Aharonov and Anandan; c$( T )  is the full phase it develops. 
After subtracting the dynamical phase we obtain the AAP. More precisely, the AAP is 
defined as follows: if $( T )  = e"$(O) then 

T 

Q = i In dt($(t) ,  $ ( t ) )  + 9. 

Inserting here $( t )  as given by (3)  we get (using 9 = c$( T )  - +(O)) 
(7) 

=$di'[w:(6)i* + q : ( l ) ( + O ,  q$0)1 .  

Note that the AAP is defined entirely in terms of Cartan forms on G/S (cf Giler 
et a1 1989). 

Assume now that the Hamiltonian H ( 5 )  itself performs a cyclic motion, t(0) = e( T ) .  
To obtain the adiabatic approximation we note that the condition that U({ ( t ) ) J lo  is 
an eigenvector of H ( 5 )  is equivalent to the equality 

(8) D ; ( l ) a " ( O  + D;(l)a'(O = 0. 

Then the eigenvalue condition H ( 5 )  U ( l ) $ o  = EU(5)$o gives 

E =(O: (l)aA ( ' $ ) + D : ( L ) a ' ( 6 ) ) T A *  



Non-integrable phases and coherent states 1987 

Taking a scalar product of both sides of ( 5 )  with t+bo we arrive at the formula for BP 
identical to that for AAP, equation (7) (cf Brihaye and Kosihski 1989), but supplemented 
with (8) instead of ( 6 a ) .  

2. Some examples 

We shall consider some examples of non-integrable phases, mostly already discussed 
in the literature. As a first example consider the harmonic oscillator under the influence 
of external force. 

Let us consider the group G generated by the elements N = ;( p 2  + q 2 ) ,  p ,  q, I .  We 
start with some eigenvector $,, of N. The equations (6) read (t+b(C) -= exp i( Pq - Qp)+, , )  

Q = P  

P = - Q + f( t ) 

Note that (&,, p & , )  = (&,, q&,) = 0; therefore we need only the Cartan form correspond- 
ing to the stability subgroup generated by I and N. It reads (see the appendix for the 
calculation of Cartan forms) 

i ( P d Q - Q d P ) * Z .  

The Berry phase is trivial here because the parameter space is one dimensional. 
However, for some choices o f f (  t )  we may have the solutions with Q(0)  = Q( T )  = 0, 
P ( 0 )  = P( T )  = 0. Then the AAP is given by? 

a = l $ ( P d Q - Q d P ) =  2 b J  P d Q = -  d Q d P  

As a second example let us consider the 'classical' case of the spin in the external 
magnetic field. The relevant group is SU(2) while the stability subgroup is U( 1). The 
coherent states read 

I j , m). 15) = ecJ+-cJ- 

Again we need only the Cartan form related to the subgroup, because ( j ,  mlJ,lj, m )  = 0. 
It reads (see the appendix) 

We arrive therefore at the following result for AAP or BP: 

But there exists the following relation between 5 and the unit vector n = (sin 8 cos cp, 
sin 8 sin cp, cos 6): 5 = -48 e-'' (Perelomov 1986); with this relation we can rederive 
the result of Berry. 

t Note that this result in fact does not depend on the choice of IL0 because other Cartan forms are exact 
differentials. 
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The third example is provided by the harmonic oscillator with time-dependent mass 
and frequency (in fact, by a suitable change of time variable this is reduced to the 
case of constant mass). The Schrodinger equation 

H( t )  = f( P 2  + W Z (  t)q') 

may be written as (Perelomov 1986) 

i$(t)  = n(t)K+(t) i 2 . K  R3K3 - R ,  K ,  - RzKz 

where 

It is easy to check that the operators K i ,  i = 1,2 ,3 ,  form the Lie algebra of SU(1, l ) ;  
in terms of the creation and annihilation operators at t = 0 they read ( K ,  = i( K,iK2): 

a' 
K -  =- K 3  =! (aut+  a+u) .  ( a + ) 2  K + = -  

2 2 

Noting that H ( 0 )  = 2w(0)K3 we conclude that if cL0 is an eigenvector of H(O),  the 
subgroup S is the U( 1 )  group generated by K , .  Therefore the coset space parametrising 
the coherent space is 

G / S  = { n  : n:- n : -  n : =  1,  n,> 0). 

The coherent states read 

$0 
16) = e(5K+-5K-)  

where 6 = - f ~  e-i4, n = (sinh T cos (c, sinh T sin cp, cosh T ) .  To calculate BP or AAP note 
that ( Jlo, = 0 for any eigenstate of H ( 0 ) .  The Cartan form corresponding to the 
subgroup reads 

-i( 6 d f -  f d6) 
( 1  -cosh 2/61). 

215IZ 
w =  

The non-integrable phase reads 

Again it is proportional to the areat of part of a hyperboloid n: - n: - n: = 1 encircled 
by the loop C. Actually, in our case only the AAP is non-trivial. However, we may 
allow CL2 # 0, i.e. consider the generalised oscillator with the term p q  + qp added. 
Nothing will then change in our conclusions. 

Let us now pass to the more general case of the harmonic oscillator with time- 
dependent frequency under the influence of time-dependent force 

H( t )  = +( p2+ w2( t ) q 2 )  -f( t )q .  

* Of course, we mean here the invariant measure on the Lobachevsky plane. 
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With the help of generators Ki and the creation and annihilation operators at t = 0 we 
may write 

H( t )  = a( t ) K  -- f ( t )  ( a  + U + ) .  m 
The operators K i ,  a, a+ and Z form the Lie algebra. Starting with the eigenstate of 
the unperturbed Hamiltonian at t = 0 we see that the stability group is generated by 
K3 and Z. The coherent states read (for a choice of parametrisation here see the 
appendix) 

16, z )  = e t K + - i K K -  z ~ * - %  e I$o). 

We check that ($o, K,_ILo) = (I)~, 
to the subgroup is 

= ( cL0, a'$o) = 0; the Cartan form corresponding 

1 
w K ~ + -  ( 5  dz - z dZ)Z +f( 2'77- + Z 2 ~ +  + 1 ~ 1 ' ~ )  - Z 

2 

where 77* and w correspond to the subgroup SU(1 , l )  (see the appendix). With the 
above form we can calculate the non-integrable phases. 

We conclude with the following remark. As it has been shown in the book of 
Perelomov (1986) the SU(1, l )  group is the dynamical symmetry group also for the 
singular oscillator 

U 2  

4 
H = f ( p * +  w 2 (  t ) q 2 )  +-I. 

This allows us to calculate the AAP in the same way as above. 

3. Final remarks 

As it has already been noticed by Giavarini and Onofri (1989) the coherent states 
provide a convenient tool to analyse the non-integrable phases for certain class of 
Hamiltonians. This class is quite large; it contains Hamiltonians expressible in terms 
of generators of some Lie algebra. We have presented some rather standard examples. 
For other physically interesting ones see the book by Perelomov (1986). 

We have expressed the non-integrable phase in terms of a loop integral over the 
Cartan forms. This makes its geometrical origin transparent. Moreover, the existence 
of a systematic algorithm for calculating the Cartan forms makes it possible to determine 
effectively the Aharonov-Anandan and Berry phases. 

Appendix 

We show how to calculate the Cartan forms. It is a very simple task for nilpotent 
groups while for others the straightforward use of the Hausdorff formula seems to be 
ineffective. We use the method of Volkov and Pervushin (1978). The Lie algebra of 
the group under consideration reads 

[T,, TpI=iC&T, 
[ T, , T, ] = i C k, Tk + i C f ,  Tp 

[ T,, T,] = i CE Tk + iCG T, . 
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The Cartan forms are defined as follows: 
E i e-ifkTk d ektkrk E w*TA + vkTk 

To calculate R we introduce the additional parameter t 
i e-irtkTk d eittkTk = -@*(?)TA + T k ( f ) T k .  

Differentiating with respect to f and using (Al)  one gets 
A( f )  = i[n( f ) ,  t k T k ]  -dtkTk 

or 

('42) r k  k d h  ' - C ; k q  5 - cakwa(5 

4' -d t '  - C' A k W A t k -  CfkvJtk. 
Solving (A2) with the boundary condition w *  ( t  = 0) = v l (  f = 0) = 0 and taking t = 1 we 
obtain the Cartan forms. 

The SU(2) group 
We define 

i ,-(tJ+-&) d e(tJ+-fJ-) v+ J+ + 7- J- + wJ3. 

The equations (A2) read 

d = -2( v+f+  7-5) 
7 j + = i d t + w t  

4- = -i d f +  a.$ 
The solution to them is 

r]-=17+. 

The SU(1, I) group 
With the same parametrisation 

i e-(5K+-tK-l  d e(tK+-EK-)  v+ K ,  + v - K -  + wK3 
we get 

= 2(fv+ + 57-1 
4+ = i d t +  w t  

4- = -i d f +  wf 

and 
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The extended Heisenberg group. Consider the group generated by N = a'a +:, a, a +  
and I and the one generated by I and N as a subgroup. The Cartan form reads 

0 = i e - ( Z o + - i C l )  d e ( Z O + - i d  = - w N N  + wZ+ v+a++ 17-a. 

Our method gives 

1 R = - (1 dz - z di)Z + i  dz a + -  i dza. 
2 

Finally let us note that in some cases it is convenient to choose another parametrisa- 
tion. Assume that the algebra under consideration is the sum of two subalgebras, 
L = T+ M. If we choose the parametrisation (taking from both subalgebras only the 
generators corresponding to the coset space) 

eickTT, eiA"Mn 

then 
a T + M  - - i A n M e  e-i<kTk d(ei<kTk eiA"Ma) = e  

- - a M + e - i A o M o  RT e i A Y M ,  

which is often simpler to calculate. We use this method to calculate the Cartan forms 
for T = { K ,  , K 2 ,  K 3 }  and M = { a ,  a + ,  I } .  
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